
TTFLIB



TTFLIB ii

COLLABORATORS

TITLE :

TTFLIB

ACTION NAME DATE SIGNATURE

WRITTEN BY August 27, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



TTFLIB iii

Contents

1 TTFLIB 1

1.1 main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 ttf.library Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Credits and Legal Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 FreeType Project License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Using ttf.library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Using ttfmanager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.9 Quick Font Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.10 ttfmanager Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.11 ttfmanager Options Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.12 ttfmanager Preview Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.13 ttfmanager Keyboard Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.14 ttfmanager Mapping Test Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.15 ttfmanager Font Information Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.16 ttfmanager Workbench options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.17 ttfmanager Shell options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.18 Using ttfinstall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.19 Using ttflist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.20 Using ttfcp and alternate codepages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.21 Using Bitline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.22 Using ftview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.23 Limits and known problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.24 Recent Change History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.25 The future of ttf.library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.26 Frequently Asked Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



TTFLIB 1 / 27

Chapter 1

TTFLIB

1.1 main

ttf.library version 0.8.2

A truetype font engine for Amiga computers.

Overview

Credits/Legal

Requirements

Installation

Usage

ttfmanager

ttfinstall

ttflist

ttfcp

Bitline

ftview

Limits

Recent Changes

Future

FAQ
The most current publicly available version of this software

can be found at the following web address:



TTFLIB 2 / 27

http://ragriffi.home.sprynet.com/

Send comments, suggestions, and bug reports to:

Richard Griffith
ragriffi@sprynet.com

1.2 ttf.library Overview

Overview

ttf.library is a truetype compatible font engine for Amiga OS.
It functions in a manner compatible with the outline font engine
standard established by Commodore with the bullet.library engine
for compugraphic format fonts. This means that Amiga applications
which use normal system fonts are now able to use truetype fonts.

1.3 Credits and Legal Issues

Credits and Notes

The ttf.library and related programs were made possible by
the outstanding achievement known as the FreeType Project.
For more information, visit http://www.freetype.org/

Also, Amish S. Dave’s type1.library (which does for postscript
type1 fonts what ttf.library does for truetype) served as an
invaluable inspiration and an initial guide for the rather
poorly documented amiga outline font engine format.

Bitline, as distributed here, is an adaptation of a program
of the same name written by Georg Steger.

Legal

I am not a lawyer, nor do I want to be, so expect plain
english here.

First, this library comes with NO WARRANTY.

ttf.library is free, think of it as my gift to the faithful.
I do not restrict its use and/or distribution, however, some
of the technology used is covered by a separate license, see
the

FreeType license
for details. I do ask that if you

distribute it, please don’t try and call it your own work. I
know better, you know better, and I’m sure karma will get you.
If you sell it, be advised you will have stiff competition,



TTFLIB 3 / 27

as it will continue to be available free. (As a side note, no
I don’t think all software should be free. I make my living as
a programmer, consultant, general geek type, so I do place a
great value on software. This one, though, I feel should be
free. So there...)

Also note that it is virtually impossible to refer to anything
relating to the subject of fonts without the mention of at least
some trademarked names. ttf.library asserts NO CLAIM to ANY sort
of trademark whatsoever. The following list of trademarks is
provided, but may not be complete:

Amiga® is a trademark of Amiga, Inc.
TrueType is a trademark of Apple Computers, Inc.
Unicode® is a registered trademark of Unicode, Inc.
Microsoft® and Windows® are registered trademarks of Microsoft
Corporation

M$ and Windoze are derisive terms, unregistered by any party
to the best of my knowledge.

1.4 FreeType Project License

The FreeType Project LICENSE
----------------------------

Copyright 1996-1999 by
David Turner, Robert Wilhelm, and Werner Lemberg

Introduction
============

The FreeType Project is distributed in several archive packages;
some of them may contain, in addition to the FreeType font engine,
various tools and contributions which rely on, or relate to, the
FreeType Project.

This license applies to all files found in such packages, and
which do not fall under their own explicit license. The license
affects thus the FreeType font engine, the test programs,
documentation and makefiles, at the very least.

This license was inspired by the BSD, Artistic, and IJG
(Independent JPEG Group) licenses, which all encourage inclusion
and use of free software in commercial and freeware products
alike. As a consequence, its main points are that:

o We don’t promise that this software works. However, we are be
interested in any kind of bug reports. (‘as is’ distribution)

o You can use this software for whatever you want, in parts or
full form, without having to pay us. (‘royalty-free’ usage)



TTFLIB 4 / 27

o You may not pretend that you wrote this software. If you use
it, or only parts of it, in a program, you must acknowledge
somewhere in your documentation that you’ve used the FreeType
code. (‘credits’)

We specifically permit and encourage the inclusion of this
software, with or without modifications, in commercial products,
provided that all warranty or liability claims are assumed by the
product vendor.

Legal Terms
===========

0. Definitions
--------------

Throughout this license, the terms ‘package’, ‘FreeType Project’,
and ‘FreeType archive’ refer to the set of files originally
distributed by the authors (David Turner, Robert Wilhelm, and
Werner Lemberg) as the ‘FreeType project’, be they named as alpha,
beta or final release.

‘You’ refers to the licensee, or person using the project, where
‘using’ is a generic term including compiling the project’s source
code as well as linking it to form a ‘program’ or ‘executable’.
This program is referred to as ‘a program using the FreeType
engine’.

This license applies to all files distributed in the original
FreeType archive, including all source code, binaries and
documentation, unless otherwise stated in the file in its
original, unmodified form as distributed in the original archive.
If you are unsure whether or not a particular file is covered by
this license, you must contact us to verify this.

The FreeType project is copyright (C) 1996-1999 by David Turner,
Robert Wilhelm, and Werner Lemberg. All rights reserved except as
specified below.

1. No Warranty
--------------

THE FREETYPE ARCHIVE IS PROVIDED ‘AS IS’ WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
USE, OF THE FREETYPE PROJECT.

As you have not signed this license, you are not required to
accept it. However, as the FreeType project is copyrighted
material, only this license, or another one contracted with the
authors, grants you the right to use, distribute, and modify it.
Therefore, by using, distributing, or modifying the FreeType
project, you indicate that you understand and accept all the terms
of this license.



TTFLIB 5 / 27

2. Redistribution
-----------------

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

o Redistribution of source code must retain this license file
(‘licence.txt’) unaltered; any additions, deletions or changes
to the original files must be clearly indicated in
accompanying documentation. The copyright notices of the
unaltered, original files must be preserved in all copies of
source files.

o Redistribution in binary form must provide a disclaimer that
states that the software is based in part of the work of the
FreeType Team, in the distribution documentation. We also
encourage you to put an URL to the FreeType web page in your
documentation, though this isn’t mandatory.

These conditions apply to any software derived from or based on
the FreeType code, not just the unmodified files. If you use our
work, you must acknowledge us. However, no fee need be paid to
us.

3. Advertising
--------------

The names of FreeType’s authors and contributors may not be used
to endorse or promote products derived from this software without
specific prior written permission.

We suggest, but do not require, that you use one or more of the
following phrases to refer to this software in your documentation
or advertising materials: ‘FreeType Project’, ‘FreeType Engine’,
‘FreeType library’, or ‘FreeType Distribution’.

4. Contacts
-----------

There are two mailing lists related to FreeType:

o freetype@freetype.org

Discusses general use and applications of FreeType, as well as
future and wanted additions to the library and distribution.
If you are looking for support, start in this list if you
haven’t found anything to help you in the documentation.

o devel@freetype.org

Discusses bugs, as well as engine internals, design issues,
specific licenses, porting, etc.

o http://www.freetype.org



TTFLIB 6 / 27

Holds the current FreeType web page, which will allow you to
download our latest development version and read online
documentation.

You can also contact us individually at:

David Turner <david.turner@freetype.org>
Robert Wilhelm <robert.wilhelm@freetype.org>
Werner Lemberg <werner.lemberg@freetype.org>

--- end of license.txt ---

1.5 System Requirements

Requirements

OS3.0 or higher

Separate archives are available with optimized versions for
68020, ’030, ’040, ’060, as well as generic 68000 series CPU’s.

1.6 Installation

Installation

Install-ttflib is a standard installer script, just double
click the icon.

If you prefer a manual installation, here is a breakdown
of the primary components:

File Installation instructions
------------ ------------------------------------------------------
ttf.library copy to your LIBS: drawer
ttfmanager copy to your favorite tool drawer (i.e. sys:utilities)
ttfinstall " " " " " " (optional)
ttflist " " " " " " (optional)
ttfcp " " " " " " (optional)
Bitline " " " " " " (optional)
ftview " " " " " " (optional)

1.7 Using ttf.library

Usage

The following tools are available:

ttfmanager
make truetype fonts available to system



TTFLIB 7 / 27

ttfinstall
alternate (CLI) tool to install fonts

ttflist
list names and other details from font files

ttfcp
codepage tool for non ECMA-Latin1 usage

Bitline
create bitmap versions of an outline font

ftview
preview a font

1.8 Using ttfmanager

ttfmanager

To use a truetype font, it must first be installed to some part
of the system FONTS: drawer. Installation is a bit different than
with the compugraphic intellifont program. First, outlines (the
actual truetype font files) are NOT copied to the font directory.
Instead only the ".font" and ".otag" files are created in the
selected directory, and those reference the outlines at the same
locations from which they were installed. This makes it much
easier to use large font libraries directly from CD-ROM, for
example. The font files used by the bullet.library in some cases
are actually modified by the installation process, making the
copying a requirement. In contrast, ttf.library uses unmodified
files, so there is no reason to restrict your choices in disk
space management. If you really want a "_ttfoutlines" directory
in FONTS:, create it, and copy your font files there before the
installation.

The second major difference is that the fonts may be installed
to any drawer, not just a FONTS: component. (Note that to USE a
font in many programs, the drawer must be assigned to FONTS:,
but this allows you to selectively add the required font path
components as needed.) This allows for a rotating assignment
for FONTS: which is practically required with any large font
collection. (Image how long it would take to load the standard
system font requester if you had 6000 fonts actually available!)

Also see:

Quick Instructions

Main Window

Options Window

Preview Window



TTFLIB 8 / 27

Mapping Test Window

Information Window

Keyboard Controls

Workbench Options

Shell Options

1.9 Quick Font Installation

Quick Instructions

To install truetype fonts, enter a source directory (where the
ttf files are located) in the source directory box. Clicking
the ’set’ button to the right will bring up a standard file
requester to allow you to choose the directory. A list of the
internal names of all installable truetype fonts in the source
directory will be generated in the Available Fonts list.

Set the Destination Drawer in a similar fashion.

To install a single font, click on it in the Available Fonts
list. If you desire, you can change the name in the Font Name
box. Then click the ’Install’ button.

To install all of the fonts in the Available Fonts list, click
on the ’Install All’ button. All fonts installed this way
will get default names and options.

Please note that ttfmanager will OVERWRITE the .font and .otag
files if they already exist, thus installing two fonts with
the name ’CoolNewFont’ will result in only one available font.

1.10 ttfmanager Main Window

ttfmanager Main Window

ttfmanager features a multi-window interface, providing only
as much as you decide you want to see. The main window provides
the most basic functions, selecting and installing truetype
fonts. Closing the main window exits ttfmanager.

Available Fonts

Shows all the available fonts in the Font Source directory. To
select a font for further processing, click on it in this list.



TTFLIB 9 / 27

Font Source

The location of the actual font file. The Set button will bring
up a standard file requester, from which a suitable directory
can be chosen. This gadget can also accept a wildcard pattern to
match only specific files. For example, CD0:A#?.ttf will restrict
the files shown in the Available Fonts list to only those fonts
where the filename starts with ’A’ and ends in ".ttf".

See
Workbench Options
to set a default value for this field.

Font Destination

The directory into which the .font and .otag files which allow
a font to be used by the system will be placed by Install. The
Set button allows choosing this from a standard file requestor.

See
Workbench Options
to set a default value for this field.

New Font Name

ttfmanager will fabricate a name for a font from information
within the font file itself, and place it here. To change the
name before installing, overtype it here.

Install

Installs the currently selected truetype font as an Amiga font
named as specified in New Font Name, in the directory specified
by Font Destination, using any options specified in the options
window.

Install All

Installs all the fonts in the Available Fonts list into the Font
Destination directory. All fonts will be given default names and
options.

Preview

Opens the
Preview
window.

Info



TTFLIB 10 / 27

Opens the
Font Information
window.

Options

Opens the
Options
window.

The message area across the bottom of the window displays any
status or error messages.

1.11 ttfmanager Options Window

ttfmanager Options Window

The options window provides access to virtually all of the
information used in creation of the .otag file which describes
a font to the system. Most of the time, the default settings
should be adequate, but for ’problem’ fonts, changing some of
these settings may be required.

Encodings

Displays all encoding tables available in the currently
selected font. ttfmanager will attempt to identify an
appropriate unicode table. If the chosen table is incorrect,
click on the desired one to change it.

Selected/Raw/Offset

If desired, you may choose to bypass the encoding table and
access the glyphs of a font directly. The raw option maps
glyphs in order, beginning at the specified Offset, to
ASCII printable characters only (values from 33 to 126.) This
is intended for use with dingbat and clipart fonts, or for
accessing otherwise unreachable glyphs in large fonts for
artistic purposes only.

Code Page/Use/Set

This cluster of gadgets allows a specific codepage to be
associated with a specific font. In the string entry gadget,
specify the full path of the desired codepage definition file.
The Set button brings up a standard file requestor which can
be used to select a file. For more information on the codepage
definition format, see

ttfcp
.



TTFLIB 11 / 27

The Use gadget turns the font specific codepage on and off.
If on, the needed codepage information is stored directly in
the .otag file created by an Install operation, so the source
codepage file can be moved or deleted after the install with
no impact on the operation of the fonts. The .otag codepage,
if specified, overrides the default one, either built-in or
set with ttfcp.

Note that these options are NOT reset by selecting a new face
from the Available Fonts list, so, by setting the codepage
once, a series of fonts can be installed using it.

New Font Name

This is a second copy of the field of the same name on the

main window
, placed here for convenience sake. Note that

you can create multiple Amiga fonts from a single truetype
file, each with its own options, but remember to give each
a unique name here. (It is strongly recommended to press
the ’enter’ key to complete the entry of a new name.)

Space Width

Controls the advance width used for the space character.
This also serves as the advance width for all glyphs if
the font is declared as Fixed Width.

Mapping

The following attributes are used by the diskfont.library, or
similar font mappers, to determine the attributes of the outline
font. The default setting are usually adequate, but if you feel
that ttfmanager has misidentified a font, they may be changed.

The quality of the default settings is directly related to the
quality of the information provided in the font, which in turn
depends on the designer’s attention to detail.

Slant Style - Controls Italic attribute
Weight - Controls the Bold attribute
Width - Controls the Extended (wide) attribute
Serif - Seems to be a comment(?)
Spacing - Controls Monospaced (fixed pitch) attribute

Sizes

A list of sizes which will be listed for this font in the
system available fonts list. Use the Add, Del, and size
entry gadget to modify this list. See

Workbench Options
to



TTFLIB 12 / 27

change the defaults used here.

Metric Source

Perhaps the most visually significant switch on this screen.
A truetype font typically contains no fewer than four distinct
sets of information indicating the amount of space glyphs in
the font will occupy. This information is critical to the
proper operation of ttf.library, especially when used through
the diskfont.library mechanisms. Unfortunately, these numbers
are inconsistently used by different programs and designers.

By default, ttf.library will fit a fonts entire bounding box
into the amiga sized box, which for screen fonts is typically
’size’ pixels high. If a font has qlyphs (even ones you may not
use) that extend the bounding box significantly from the needs
of the more typical glyphs, the resulting font may be much too
small. For this problem, the following options are available:

Bound Box - uses the global font bounding box as the basis
for size calculations. This is the default, and
is correct for all but a few fonts. This is the
most consistently reliable metric found in a
real world sample of hundreds of fonts.

Raw EM - uses the em size directly This is equivalent to
the previous version’s ’Stretch’ option. It can

give a giant boost to the visual size, but also
can create significant problems. For uses that
do not use diskfont.library, like word processors
such as final writer, this can also be useful.

Mac - uses Ascender and Descender values from the
horizontal header. This metric is most often
used by Apple systems.

Typo - uses supposedly ’system independent’ typographic
values from the OS/2 table. The definition of
this value seems to have a varied interpretation
and is missing, or identical to the usWin value
below in many fonts.

usWin - uses the usWindow values from the OS/2 table.
This value is a bounding box for latin-1 glyphs.
It is also subject to wild variation in free and
shareware fonts.

Custom - uses the values entered in the yMax and yMin gadgets
for calculations. These values are in font units,
and may be directly entered, or generated using
the Calculate button. The calculated value is the
highest ascent and lowest decent from only the
glyphs used by the active code page (either as
specified for this font, or as system default.)

Note that Preview will show the chosen size, but it may not



TTFLIB 13 / 27

properly illustrate any imperfections which may result. In
particular, if the height is too small, a jumping baseline,
where some glyphs sit some varying distance above or below
the expected baseline may result. Choose wisely.

For the curious, the shifting baselines are the result of
the diskfont.library trying to fit the glyphs into the pixel
height box. If the ascent is too high, the bit map is pushed
down, resulting in a low baseline. If the descent is too
low, the bit map is moved up. Interestingly, ttf.library
does not explicitly tell diskfont.library how to locate the
baseline, as it infers it instead from the glyph descriptions.

Test
Opens the

Mapping Test
window.

Info

Opens the
Font Information
window.

Preview

Opens the
Preview
window.

Install

Installs the currently selected truetype font as an Amiga font
named as specified in New Font Name, in the directory specified
by Font Destination (on the

main window
) using any specified

options.

The message area across the bottom of the window displays any
status or error messages.

1.12 ttfmanager Preview Window

ttfmanager Preview Window

This optional window will display a sample of the currently
selected font. Resizing the window will redisplay the sample
in a size determined by the new window size.



TTFLIB 14 / 27

See
Workbench Options
to set the default string used for the preview.

Preview also has several
keyboard control
options:

ESC or DEL - clears the current preview string
Backspace - remove the last character from the preview string
any character - adds the character to the preview string
Cursor Left - Apply kerning to preview display
Cursor Right - Turn off kerning in preview display

1.13 ttfmanager Keyboard Controls

ttfmanager Keyboard Controls

The following keys are available in any ttfmanager window:

Cursor Down - Select the next font from the Available Fonts list
Cursor Up - Select the previous font from the Available Fonts list

1.14 ttfmanager Mapping Test Window

ttfmanager Mapping Test Window

This optional window displays the font on a 32 by 8 grid, applying
all codepage and encoding selections made on the

Options
window.

The grid is square and can only be changed in size by a
tooltype
setting. Some fonts which are wider than tall will look rather bad

in this window. For more typical character fonts, however, it will
aid in identifying non-defined positions in the character map, as
well as other mapping anomalies.

The default
MAPGRID
size is 18 pixels, which will display on any

hires workbench. If the window size needed to place the 32x8 grid
at the specified MAPGRID size is larger than the actual display,
it will be truncated to the top left corner that will fit.

1.15 ttfmanager Font Information Window



TTFLIB 15 / 27

ttfmanager Font Information Window

This optional window shows Name and Copyright information, as
well as various statistics and metrics from the currently
selected font.

1.16 ttfmanager Workbench options

ttfmanager Workbench options

ttfmanager supports the following ToolTypes in its icon:

SOURCE
Specifies the initial Font Source in which to look for truetype
font files. Example: SOURCE=Work:myfonts

FONTS
Specifies the initial Font Destination, a directory in which the
.otag and .font files for an installed truetype font will be
placed. Example: FONTS=Sys:ttfonts

SIZES
Specifies the default Sizes as seen on the options page. This
specifies the font sizes which will be reported in the system
AvailFonts list for use in font requestors. Up to 20 sizes may
be specified in a comma separated list. Example:
SIZES=10,12,16,24,32,48,64,72,98,122

PREVIEW
Specifies the string used for the Preview option Example:
PREVIEW=Every Good Boy Does Fine

MAPGRID
Specifies the pixel size for the Mapping Test option. Example:
MAPGRID=20

Additional arguments, such as shift-clicked icons, will be used
as the Font Source. For example, select a drawer on the workbench,
hold down the shift key and double click the ttfmanager icon,
and ttfmanager will use the drawer as the initial Font Source.
Also, a project icon associated with a truetype font file could
refer to ttfmanager as its default tool, invoking ttfmanager
when clicked, which would set the Font Source to the single file.
Note that the project file does not have to be a font file. Any
ToolTypes in the project icon are evaluated as well.

1.17 ttfmanager Shell options

ttfmanager Shell options

The current command line interface will change soon



TTFLIB 16 / 27

FROM/A,TO/A,SIZES/F

Example: ttfmanager work:coolnewfonts fonts: sizes=12,24,36,48

1.18 Using ttfinstall

ttfinstall

Note:
ttfmanager
is now available and will perform font

installation from the Workbench environment. This tool is
included for those who want CLI and scripting power. For
an overview of font installation, including differences
from the system intellifont program, see

ttfmanager
.

The command line for installing a truetype font looks like
the following:

ttfinstall fontfile.ttf sys:fonts

Note that ’fontfile.ttf’ is the actual file to be installed, and
’sys:fonts’ can be any existing directory. In addition, a file
name pattern can be specified for ’fontfile.ttf’, allowing the
installation of several fonts at once. For example:

ttfinstall cd0:funky/#?.ttf work:ttfonts

Would install all the font found in the cd0:funky drawer to the
ttfonts drawer on volume work:

Once a truetype font is installed on the fonts: path, it should
be possible to select that font from any decent font requester.

Please note that ttfinstall will OVERWRITE the .font and .otag
files if they already exist, thus installing two fonts with
the name ’CoolNewFont’ will result in only one available font.
It is possible to rename both the .font and .otag files once
they have been created, so multiple fonts with the same internal
name can be used if you work at it. ttfmanager has an option
to change the name when installing individual fonts.

Note: switches EXACT, TYPO, and DESIGN are no longer valid.

1.19 Using ttflist

ttflist



TTFLIB 17 / 27

ttflist works a lot like the normal system ’list’ command, but
is designed to display readable names along with the file name.
Also, it will optionally provide a great deal of perhaps useful
information from a font file. The command line would look like:

ttflist [pattern] [all] [verbose]

where:

pattern is an optional amigados file pattern or
drawer name. By default it is "#?.(ttf|ttc)"

all is an optional switch to list matching drawer
contents as well. Note that the pattern specified
must match the drawer names to be searched. When
all is specified the default pattern is "#?".

verbose gives a lengthy, and probably ignorable, report for
each font found.

example: ttflist cd0: all

1.20 Using ttfcp and alternate codepages

ttfcp and alternate codepages

ttfcp is a command line tool to install codepage tables that
allow the use of ttf.library on systems which do not use the
default ECMA Latin-1 character set. ttfcp uses simple text files
to describe the mapping of the 256 possible Amiga character set
positions to any unicode characters. The text file format is
quite simple:

- Each mapping line contains two numbers separated by space
and/or tab characters. These numbers may be in decimal,
octal, or hexadecimal. (decimal numbers must start with
a digit 1-9, octal with a "0", and hexidecimal with "0x")
The first number is the Amiga character set position being
mapped, and must be between 0 and 255. The second number
is the unicode character to be assigned to the position.

- A "#" character begins a comment
- any line without two valid numbers as the first non space

items are ignored without warning
- any character positions not mapped will be set to 0

Sample mapping file lines: ---------------------------------
# full line comment
0x20 0x0020
32 32 # functionally identical to the previous line
325 0x0042 # this line would be ignored (index>255)
49 72659 # this line would be ignored (unicode>0xFFFF)
0xA1 0x040E # CYRILLIC CAPITAL LETTER SHORT U
0xB6 0x0386 # GREEK CAPITAL LETTER ALPHA WITH TONOS
------------------------------------------------------------



TTFLIB 18 / 27

Note: A variety of mapping tables suitable for use with ttfcp
are available at ftp.unicode.org in Public/MAPPINGS.

ttfcp translates the mapping table into a more efficient form
for use by the library. The command line is:

ttfcp mapfile [ENV] [TO outfile]

where:

mapfile is the required mapping file as described above.

ENV is a switch which will cause the translated table
to be placed in the "ttfcodepage" environment
variable. (And copied to ENVARC:)

TO file allows writing the translated table to "file"
(This option is not very useful, as currently
nothing else uses the created files.)

example: ttfcp 8859-2.TXT ENV

If neither ENV or TO options are specified, no translated
table is written, but an normalized ascii version of the
input is displayed.

To enable alternate codepage support:

1) obtain or create a mapping file
2) use ttfcp with the ENV option to install the mapping file

These steps need only be performed once. The next use of the
ttf.library will begin using the new codepage mapping. To
remove codepage mapping delete the file "ttfcodepage" from
ENV: and ENVARC:.

For codepage support to work correctly, the fonts used must
contain the glyphs needed to represent the characters of
the chosen codepage. Also, the font must have a suitable
unicode encoding table. You can check the results of the
code page and encoding selections with the

Test
button on

the
Options
page.

By default, ttf.library will use straight Unicode translations.
The codepage definitions only affect the first 256 character
positions. If you need full unicode support, either the system
codepage or the font specific codepage will need to provide a
straight conversion (i.e. ISO-8859-1).



TTFLIB 19 / 27

1.21 Using Bitline

Bitline

Bitline is a small shell utility which allows you to convert
Amiga outline fonts to Amiga Bitmap fonts. Bitline works with
the diskfont.library, so any font format your system can use
can be converted.

Bitline is an adaptation of Bitline 0.5 by Georg Steger, and
is being distributed with permission from Georg. Thanks Georg!

Bitline can only be used from shell. It has the following
argument template:

FONTNAME/A,SIZES/N/M/A

FONTNAME: Path of source outline font. You must specify the
font contents file (the one that ends with ’.font’.)
The ".font" suffix is optional, and the entire FONTS:
assign will be searched if no directory is specified.
example: "fonts:foboz.font"

SIZES : One or more font sizes you want to have created.

For example,

Bitline foboz 10 20 30 40

would creates bitmaps at 10, 20, 30 and 40 sizes from the font
’Fonts:foboz.font’

Warning - this is the first public release of this version of
Bitline. Do use caution, and please report any problems.

Legal Note - fonts are usually copyrighted entities, and
the use thereof may be limited by license or other agreements.
It is the users responsibility to verify that the use of this
utility does not violate the terms of such license.

1.22 Using ftview

ftview

ftview is a truetype font display program from the FreeType
project test suite. Its command line format is:

ftview [-g] [-r res] pointsize fontfile ...

where



TTFLIB 20 / 27

-g is an optional grey scale (smoothing) rendering.
Smoothing looks very wonderful, but is not available
through ttf.library. Also note that ftview opens on
the default public screen, and if that screen does
not have sufficient available or matching pen colors,
it may look worse. The -g option uses five distinct
grey levels.

-r res specifies an optional resolution to use in rendering
the qlyphs of the font. ’res’ is in Dots Per Inch.
Note this doesn’t change the display resolution
only the value used for font rendering.

pointsize is a required argument specifying the point size
to display.

fontfile is one or more truetype font files to view

Example: ftview 30 flyingp.ttf

While the font is displayed, options to change many rendering
characteristics are available by keystroke or standard amiga
menu selections.

1.23 Limits and known problems

Limits, warnings

Portions of this software are new, and have had minimal testing.
The performance of this software has been heavily monitored on
the development machine with enforcer, mungwall, poolwatch and
other tools, however, it is still unproven. Please use caution,
and use at your own risk.

A few features of the bullet library standard have not yet been
implemented (algorithmic emboldening) as they are not required
for proper font operation in many circumstances. Programs that
depend on these unimplemented features, or on undocumented
features of the bullet.library may not work as expected with
ttf.library.

Application Notes

PersonalPaint

Without ’Keep Ratio’ selected, there are several quirks
noted using ttf.library with the PPaint Vector Text tool.
Specifically, rotations approaching 90 degree angles do
not display. Also, when the rotation angle and the natural
diagonal angle of the text box are quite different (such
as a 45 degree rotation in a short, wide box,) the aspect
of the glyphs can become distorted. No specific cause in
ttf.library has been identified.

For the technically curious, the vector text tool specifies



TTFLIB 21 / 27

a fixed point size and the sin and cos for the rotation
angle, and appears to attempt to find a perfect fit within
the box by changing the dpi. Whatever formula it is using
is not satisfied by the ttf returned values, and, in the
case of the 90 degree rotations, the dpi are modulated to
totally unworkable values (0x3FFF by 4, in one case.)

FinalWriter

Under some circumstances ’Justify All’ formatting will be
broken when printing. It appears that the justification
is based on width and advance information from separate
resolutions, with the width data taken from a small dpi,
such as the screen, and the character advance info from
the printing dpi. TrueType font hinting can change the
width of a glyph to visually compensate at low resolutions.
FinalWriter, unlike several other high end packages, does
not ask for the bullet style width list, which would be
resolution independent.

1.24 Recent Change History

Changes in v0.8.2

Fixes problems with diacritic accents in some fonts

Changes in v0.8.1

Many fonts which previously failed to work (missing OS/2
table, common in fonts from Mac sources) should now work.

Unicode support fixed.
SpaceWidth entry gadget added to ttf.manager options.
CPU specific archives available for 68k series processors.

Changes in v0.8.0

Full unicode support now enabled
Many fonts which previously reported ’broken font - invalid

reference’ should now work. Dig out those broken fonts!
Eliminate some needless memory copying in font loading.
New mapping test window available on the Options window.
Encoding selection will choose Win Unicode over Apple; fixes

quite a few screwy fonts with bad Apple Unicode tables.
Preview window no longer limited to 640x400.

Changes in v0.7.9

add support for shear and rotation



TTFLIB 22 / 27

Changes in v0.7.8

fix buggy yMin gadget
fix crash when specifying a random file as codepage definition
add

bit map
creation utility

Changes in v0.7.7

adds options to select various or custom metrics to determine
the height factor used to scale fonts to the proper size.
In particular, this should make the M$ euro fonts usable
(again). See

Options
and

FAQ
for more information.

variety of small bug fixes

Changes in v0.7.5

eliminate potential crash when a font file could not be accessed
kerning support enabled

note that only one level of kerning is supported, and bullet
api calls specifying either ’Design’ or ’Text’ kerning will
result in the same kerning value.

corrected width list calculation (apparently broken since 0.7)
ttfmanager adds some keyboard support, especially in preview

Changes in v0.7.3

should now support infamous win symbol encoding
added ’stretch’ option for larger glyphs at small sizes
applied the most current freetype patches

Changes in v0.7.2

plugged a nasty memory leak in the library
font specific codepage support enabled

Changes in v0.7.1

ttfmanager - several cosmetic changes
ttflist - now reports some kerning table info
ttf.library
- fixed a problem with baseline shift on some characters

at smaller sizes (especially with diacritical marks)
- some changes in advance width calculations

Changes in v0.7

Reinstall Warning - some important things have changed in
the font installation, and all fonts installed with any



TTFLIB 23 / 27

previous version must be re-installed. (Sorry, but this
should be the last time.)

ttfmanager

- preview, font information and options windows added
- several changes in the .otag files produced by installing,

adding a complete set of font attribute mappings, fixing
the space width calculation.

ttf.library

- More speed! Typically 1/3 faster on a 040/25MHz.

- The library now handles internally the correction between
Amiga font size and actual em size, instead of relying on
diskfont.library to do the job. This opens the way for
several future enhancements.

Changes in v0.6.3

ttf.library now supports a system wide alternate codepage

Added ttfcp, a codepage installation tool.

Changes in v0.6.2

Only the ttf.library has changed in this version.

The quest for perfection continues - the character advance
calculations are virtually identical to that common M$ OS
engine. An issue with non-glyph widths (i.e. the space
character will be fixed in the next installer version.

Source of mystery crashes (of other tasks) found and fixed.

Changes in v0.6

Re-examined the character advance calculations to improve
spacing at smaller sizes.

Modified the font install routines to calculate the extremes
of the ascent and descent by default. Problem fonts (baseline
shifts or clipped glyphs) should be re-installed with the
new ttfmanager or ttfinstall version.

Added a fake version number to ttf.library for WordWorth.

Changes in v0.5

Added ttfmanager and Install-ttflib.
Re-examined linkages, often resulting in smaller file sizes.

Changes in v0.4

WidthLists are now supported.



TTFLIB 24 / 27

Subtle changes to returns of non-existent glyphs to be more
compatible with bullet, and make smaller (memory wise) fonts
when called by diskfont.library.

ttfinstall - correct advance width problem with monospaced fonts

Changes in v0.3

Sets many more tags in otag file to make some programs much
happier (FinalWriter, to name one.) As a result, ALL FONTS
installed with v0.2 or earlier MUST BE RE-INSTALLED. Sorry,
but the results are usually worth it.

Mimic bullet.library in handling of glyphless codes, such as
a space.

Widths are calculated more appropriately, resulting in better
display under many conditions.

Several other peculiar, but un-enumerated, bugs were squashed.

1.25 The future of ttf.library

Future

Still many improvements in the works for ttfmanager.

Add family support, allowing different font files to be used
for bold and italic requests automatically.

Add library support for algorithmic emboldening

Examining possibilities of using the forthcoming
FreeType 2 engine.

1.26 Frequently Asked Question

FAQ

Can/will it get faster?

Well, you should have seen it in the early days!

Actually, I do keep looking at ways to speed things up,
but TrueType rendering is a computationally intensive
task, and it places heavy demands on slower processors.
Faster processors and plenty of memory help a lot. I’ll
keep at it if you’ll upgrade ;)



TTFLIB 25 / 27

Why are the fonts so small or have a so much space underneath?

Microsoft’s core fonts, pan-european versions, have a very
unusual characteristic which has made the display less than
pleasing under ttf.library version 0.7 and above. First,
thanks go to Pavel Cizek for having the patience to help
me see and understand the problem.

The fonts have a run of line drawing glyphs which distort
the global bounding box (a virtual box which can surround
ANY glyph in the font.) Since version 0.7, this size has
been the basis for translating the font into Amiga sizes.
It should be noted, that the decision to use this metric
for the basis was made for several reasons, one being that
it is the most reliable metric above all others in a wide
variety of fonts examined in great detail. This unusual
feature escaped the testing. Metropol, which I used for
many Latin-2 tests, does not have any such problem. Sorry.

To allow these fonts, or any others which may have similar
problems, there are now several new options available. In
fact, this is the main reason for V0.7.7.

A quick guide to installing one of these fonts:

Select the desired font. Open the options window. Select a
metric source of ’Custom’. Make sure the correct code page
is set (either as the system default, or for this font.)
Click calculate, and two new numbers should be displayed
for yMax and yMin. Install.

Repeat these steps, including the ’Calculate’ step, for
each font which displays similar symptoms.

Can we make bitmaps, please?

A very frequently requested enhancement is for bitmap font
generation. A version of Georg Steger’s

Bitline
is now

included.

How about a PPC version?

A PPC version creates some additional concerns, but it is
being considered.

Why are the fonts so tiny? 8 point soandso.font looks
bad. On a PC I can use 7 point foboz, but it is just
little squiggles on my amiga. Etc, etc.

A quick lesson of fonts and terms is in order. In more
traditional typography, a point is a standard unit of



TTFLIB 26 / 27

measure, approximately 1/72 of an inch. A point size
refers to the size of an imaginary box surrounding the
letter ’M’, know as the em square. The size of this box
in 1/72 inch units is the point size. When Windoze defined
its version of point size, it invented a new concept,
the virtual display inch (I’m not kidding!) which is
"approximately 30 to 40 percent larger" If you consider
that the declared resolution of a typical Win display is
96DPI square, you’ll find that the math works out to the
em square point measurement is approximately the pixel
height count of the letter M.

The Amiga however uses ’points’ to specify the entire
height of the font, not just the letter M. There is no
provision, through diskfont.library for a glyph to fall
outside of a ’point’ high bitmap. As a consequence, a
box which will hold the ’M’ won’t hold a ’Ç’ or an ’È’
or any other characters. The needed room must come from
somewhere, and this means that the sizes must be scaled
to fit. Since ttf.library is at the bottom of the chain,
the apparently inflated point size must be specified. As
a result, requests for 8 point glyphs will usually result
in total garbage, as 3-4 ’points’ get used for any needed
ascenders and descenders, leaving little to reflect the
characters. 10 is sometimes recognizeable, and 12 starts
to be useful for most fonts.

To match an Amiga point size exactly to those of another
platform, examine the highest ascender, lowest descender
and the letter ’M’ on the other platform. The letter ’M’
should be approximately the point size pixels tall. Add
the additional pixel heights of the high and low extremes
to that point height, and you should have a close value
for a corresponding Amiga size.

What can I do to make my browser look like a PC?

You can match the font sizes used by default in MSIE
or Mozilla on a Winbox. There will be differences in
the layout by the browser, but the letters in the words
could be made to match in many ways. The biggest problem
is in finding the correct sizes to specify, approximate
values of which are presented below. You will need to
obtain the TimeNewRoman and CourierNew font families.
I leave all legal, ethical and tactical aspects of this
to the individual. (These are excellent fonts, and they
are available without cost, but I have yet to find an
Amiga only way to obtain some versions of them, and
remain entirely within the EULA. The win3.1 versions
can be extracted with unzip, but not all faces, nor
the latest versions are available in this form.)

Approximate matching fonts/sizes are as follows:

H1 TimesNewRomanBold/36
H2 TimesNewRomanBold/28



TTFLIB 27 / 27

H3 TimesNewRomanBold/20
H4 TimesNewRomanBold/18
H5 TimesNewRomanBold/14
H6 TimesNewRomanBold/12

FONT SIZE=1 TimesNewRoman/12
FONT SIZE=2 TimesNewRoman/15
FONT SIZE=3 TimesNewRoman/18
FONT SIZE=4 TimesNewRoman/20
FONT SIZE=5 TimesNewRoman/27
FONT SIZE=6 TimesNewRoman/35
FONT SIZE=7 TimesNewRoman/53

Preformated CourierNew/15

Another potentially useful browser trick is to set a codepage
to eliminate the dreaded no such character box that appears
often where quote marks and apostrophes should appear.
Although I think that any web author that allows such rot to
appear on a page (Including Amiga, Inc!) should at least be
publicly chastised, the fact remains that these artifacts are
widespread. It seems that M$ ’improved’ (in its opinion) the
ISO 8859-1 standard to create the 1252 codepage. (For more
info, see ftp.unicode.org. for mapping tables.) It seems that
range from 0x80 to 0x9F, which is non-printing in 8859-1 (a
REAL standard) is heavily and arbitrarily populated in CP1252,
adding left and right single and double quotes, the new Euro
currency symbol, and other things.

What is this strange version number on ttf.library?
WordWorth wants to open Version 2, and ttf.library is not
even to version 1.0 yet. This is a bug in WordWorth. It
has no reason to specify a library version at all when
opening the library. This is likely a holdover from a very
early bullet.library, but it is still WRONG! For the time
being, I have faked the version in the library header to
pass this test. Version 0.7 appears as version 10.7 to the
system. Any future versions will continue to be offset by
10, as long as required.


	TTFLIB
	main
	ttf.library Overview
	Credits and Legal Issues
	FreeType Project License
	System Requirements
	Installation
	Using ttf.library
	Using ttfmanager
	Quick Font Installation
	ttfmanager Main Window
	ttfmanager Options Window
	ttfmanager Preview Window
	ttfmanager Keyboard Controls
	ttfmanager Mapping Test Window
	ttfmanager Font Information Window
	ttfmanager Workbench options
	ttfmanager Shell options
	Using ttfinstall
	Using ttflist
	Using ttfcp and alternate codepages
	Using Bitline
	Using ftview
	Limits and known problems
	Recent Change History
	The future of ttf.library
	Frequently Asked Question


